Electrophilic Pt(II) Complexes: Precision Instruments for the Initiation of Transformations Mediated by the Cation–Olefin Reaction
نویسندگان
چکیده
A discontinuity exists between the importance of the cation-olefin reaction as the principal C-C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation-olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation-olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation-olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control.
منابع مشابه
TRIPHENYLPHOSPHINE CATALYZED AROMATIC ELECTROPHILIC SUBSTITUTION OF 2-HYDROXYACETOPHENONE MEDIATED BY VINYLTRIPHENYLPHOSPHONIUM CATION
Protonation of the highly reactive 1:l intermediate produced in the reaction between triphenylphosphine and dimethyl acetylenedicarboxylate by 2- hydroxyacetophenone leads to vinyltriphenylphosphonium salt, which undergoes aromatic electrophilic substitution reaction with the conjugate base to produce compounds 4,5, and 6 in 1 : 1.2:0.5 ratios
متن کاملPlatinum-oxygen Bond Formation: Kinetic and Mechanistic Studies
Reaction of [PtMe(C^N)(SMe2)] (C^N = 2-phenylpyridinate (ppy); 1a, C^N = benzo[h]quinolate, (bhq); 1b) with hydrogen peroxide gives the platinum(IV) complexes trans-[PtMe(OH)2(C^N)(H2O)] (C^N = ppy; 3a, C^N = bhq, 3b) bearing platinum-oxygen bonds. The Pt(II) complexes 1a and 1b have 5dπ(Pt)→π*(C^N) MLCT band in the visible region which is used to easily follow the kinetic of its reaction with ...
متن کاملA Density Functional Theory Investigation of d8 Transition Metal(II) (Ni, Pd, Pt) Chloride Complexes of Some Vic-dioximes Derivatives
Herein, a theoretical study on the stability of some vic-dioxime complexes of Ni(II), Pd(II) and Pt(II) in gas and aqueous phases is reported. The DFT/M06/SDD and DFT/M06/6-31G+(d,p) levels of theory were adopted for the metal ions and for every other element respectively. Structural analyses of investigated complexes have revealed square planar geometries stabilized by two O–H⋯Cl hydrogen bond...
متن کاملPolyolefin and olefin production in Iran: Current and future capacities
Due to easy availability of cheaper raw material and increase in new applications, the use of polyolefins in various industries is becoming a major priority. The Middle East region, on account of its vast oil and gas reserves has, in the last decade or so, been developing many new petrochemical complexes with their expansion into colossal polyolefin production capacities. The predictions are th...
متن کاملSynthesis, Spectral Characterization and DFT Calculations of New Co(II) Complexes Derived from Benzimidazoles
The synthesis, characterization and quantum-chemical investigations of two new Co(II) complexesderived from fluorescent benzimidazoles have been reported. Two new fluorescentheterocyclic ligands were synthesized from the reduction of imidazo[4',5':3,4]benzo[1,2-c]isoxazole derivatives, and characterized by elemental analyses, IR, mass, and NMR spectra. Coordination of the bidentate ligands ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 47 شماره
صفحات -
تاریخ انتشار 2014